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PROJECT SUMMARY

Ceramic thermal barrier coatings extend the operating temperature range of actively cooled

gas turbine components and increase engine efficiency. Performance of present yttria-stabilized

zirconia (YSZ) coatings is limited by the material's microstructure, which is determined by

deposition method. The goal of this Phase II Small Business Innovation Research project was to

extend Phase ! research which indicated that metalorganic chemical vapor deposition (MOCVD)

can produce YSZ coatings which could improve thermal barrier material through better control

of the ceramic film microstructure.

During Phase II, Spire Corporation's MOCVD reactor was extensively modified and used

to deposit YSZ coatings on turbine blade material coupons provided by a major manufacturer of

jet engines. Coating composition, crystal structure, and response to elevated temperatures were

characterized. Although major technical problems with the reactor prevented variations of

deposition conditions over a wide range, stoichiometric zirconia coatings with yttria fractions

from 0 to 14% were deposited on coupons previously coated with an oxygen barrier layer.

Difficulties with the MOCVD reactor prevented formation of YSZ coatings thicker than about 50

micrometers, thus precluding deposition of the 125 micrometer thickness needed for thermal

barriers for gas turbine blades. A Spire-proprietary technique was also tested and found to

deposit thin (1 to 2 micrometers), adherent, highly crystalline YSZ coatings. These coatings may

have potential as a nucleation layer for oxide coatings that are subsequently deposited by
MOCVD.

Although the project was unsuccessful in developing a superior thermal barrier coating,

considerable information was gained on the formation of zirconia and yttria coatings by

MOCVD. The reactor problems, mainly control of reagent partial pressures, flow patterns in the

deposition zone, and substrate heating, provide design information that will be valuable for any

future efforts to deposit thick, adherent, uniform, thermal barrier coatings. Finally, the concept of

using a thin, highly crystalline YSZ interface layer between the oxidation protection layer and

the thick thermal barrier coating has enough potential to be subject of further investigation.
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1. PROJECT OBJECTIVES

1.1 Overall Objective

Ceramic thermal barrier coatings extend the operating temperature range of actively

cooled gas turbine components and increase jet engine efficiency. Performance of existing

plasma-sprayed or electron-beam physical-vapor-deposited (EB-PVD) stabilized-zirconia

coatings are limited by the material's microstructure, which is determined by deposition method.

The overall objective of this program was to employ metalorganic chemical vapor deposition

(MOCVD) of yttria-stabilized zirconia (YSZ) coatings to improve performance through better

control of the ceramic film microstructure. Variation of process parameters in MOCVD can

independently alter the rate of nucleation and crystal growth, permitting microstructure variation

from fine grained, to columnar, to epitaxial crystal orientation. Realization of MOCVD's

potential to optimize barrier-coating structure could lead to higher performance for future aero

propulsion systems.

1.2 Technical Objectives

The technical objectives of Phase II were to deposit and test MOCVD thermal barrier

coatings on coupon samples and gas turbine blades at maximum operating temperatures. This

demonstration would be a convincing initial step toward achieving the overall objective of the

research.

1.2.1 Phase I Research

Phase I research identified two technical deficiencies to be addressed to optimize

MOCVD parameters. These problems were: (1) low vapor pressure of the yttrium source relative

to the zirconium source, and (2) an inability to heat the substrate to be coated to arbitrarily high

temperatures without causing gas phase interactions. The first problem must be resolved to adjust

the yttria content to the correct value, nominally 7%, and the second problem must be resolved to

produce an optimized crystal structure in the thermal barrier coating itself. Specific milestones to

solve these problems and achieve the technical objective were:

• Choice of yttrium precursor

• Optimization of reactor configuration

• Demonstration of strongly adherent coating

• Demonstration

in an oxidizing

• Demonstration

• Demonstration

thermal shock,

that a coated coupon survives exposure to turbine temperatures

environment, including multiple cycles and thermal shock.

of coating uniformity on a scrap turbine blade.

that a coated turbine blade survives multiple thermal cycling,

etc. in a simulated turbine environment.

1.2.2 Phase # Work Plan -

The technical effort was initially divided into thirteen tasks:

1. Set up and test modified MOCVD reactor

2. Acquire and test deposition rates for new yttrium source compound

3. Deposition of thin film YSZ on trial substrates to verify composition and

structure.



4. Depositionof YSZ to full thicknesson testsubstrates
5. Initial specimentesting
6. Failureanalysis
7. Processoptimization
8. Preliminarydepositionon turbinebladesfro uniformity
9. Samplepreparationfor burnerrig testingof blades
10.High temperaturetestingof actualcoatedblades
11.Failureanalysisof blades
12.Analysesandrecommendations
13.Reporting

As discussedin Section2.11,technicaldifficulties duringPhaseII researchnecessitateda
revisedstatementof work plan,which wasfollowedduring thefinal monthsof theprogram.

2. WORK CARRIED OUT

2.1 Section Overview-

The goal of this program-was to demonstrate a cost effective technique for depositing

ceramic thermal barrier coatings of yttria stabilized zirconia (YSZ) on turbine blades. Thickness

of the films was to be 125 -150 microns with a yttria content of 7%.

Metalorganic chemical vapor deposition (MOCVD) was used as the coating deposition

technique. The yttria and zirconia precursors were yttrium (thd) and zirconium T butoxide. The

source chemicals were purchased from INORGTECH.

Sections 2.2--2.14 describe in detail the work carried out in each of the program

quarters.

2.2 First Quarter Work

Progress during this first quarter was very slow. The contract started ahead of initial

planning so that the deposition reactor required was not available until the second quarter of the

program. Also, the key technical personnel at the subcontractor were on maternity leave, and

Spire's request for a proposal to initiate placing of the subcontract was also delayed one quarter.

The principal investigator had discussions with furnace design engineers for the modifi-

cation of the reactor. Spire's proposed concept for deposition in a cold wall system, with coaxial

tubes cooled by air flow in the outside portion and with heating of the part by infrared radiation

through the cooled walls, was judged to be a very high technical risk and an unproven design.

Reevaluating the RF power requirements for an induction heated reactor were quite

favorable. Initial estimates, as proposed, assumed tens of kilowatts would be required to heat the

bars. However, after a more thorough look at the requirements, it was determined that

approximately one kilowatt would be needed to heat the test bar to the required deposition

temperature of 750°C.



Consideringthis fact, it was decidedto go aheadand build an RF heatedreactor.A
2.5kW RF supplywasorderedandplanscommencedto build thereactor.

2.3 Second Quarter Work

During the second quarter of the program the reactor used in Phase I was modified.

Changes to the gas handling system were made to allow for better source distribution. Figure 1

shows a schematic diagram of the reactor gas distribution. Also, the RF generator was received

and installation took place. An RF coil was wound and installed around the quartz reactor tube.

Pneumatic normally
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Figure 1 Schematic diagram of gas flow control system for MOCVD reactor.

The reactor was tested to assure the test bars could be sufficiently heated. Figure 2 shows

the test bar being induction heated. The sample is glowing yellow-orange, indicating a

temperature of about 800°C; actual run temperature is nominally 750°C, measured with an

optical pyrometer. An estimated emissivity of the steel bar of 0.3 was used for the measurement.

Sources for both zirconium and yttrium were installed and made ready for deposition

experiments. Deposition experiments were planned but a vacuum pump motor failure delayed

the work.

The subcontract to Pratt & Whitney was placed, and their work began to prepare bond-

coated, aluminide test pieces for deposition and subsequent burner rig experiments.



A)

B)

Figure 2 Picture of RF heated reaction chamber (A) in normal lighting, and (B) in the dark

with only the glow of the heated sample bar visible.

2.4 Third Quarter Work

Spire made good progress during the third quarter. The pump problem was repaired and

zirconia films were deposited in the modified reactor.

Initial test runs were made to determine starting point deposition conditions and to

investigate potential reactor problems. Stainless steel bars (manufactured in the Spire machine

shop) were used for these evaluation runs. Various deposition conditions were investigated as

outlined in Table 1.



Table 1 Initial deposition conditions.

_arameters
Zr Flow
(cc) @
60°C

Y Flow
(cc)

Y Temp. (°C) 02 Flow (cc) Main Ar Flow
(cc)

Reactor
Pressure

(torr)

Bar Temp.

(oc)

20-200 80-200 135-175 100-1000 100-1000 10-50 675-775

During the deposition experiments, it quickly became apparent there was a problem with

the RF heating. Whenever 02 was added to the reactor while the RF was on and the chamber

pressure was below 10 torr, a plasma would form. The plasma was especially intense at the

stainless steel coupling used to hold the test piece to a support rod. A new coupling was

fabricated using an insulating material (boron nitride) and installed. The new coupling reduced

the plasma to a small area around the threaded inserts securing the rod. The plasma was far

enough downstream from the deposition area to allow the experiments to continue.

The best deposited films were ten microns thick, deposited in one hour. The thickness of

the coating along the test bar was ascertained from interference fringes along the rod. Zirconia

thin films are transparent and produce these fringes. The coating thickness was graded almost

linearly with distance along the rods, becoming thinner as it moved away from the injection point

of the reactor. The reactor walls were quickly coated with a thick white powder deposit. A

sample of the powder and a test stainless steel bar from the same deposition run were analyzed

by energy dispersive spectroscopy (EDS). The powder sample indicated a yttrium-to-zirconium

ratio of 12.6 to 87.4 atomic percent. However, EDS done on the test bar only indicated the

presence of Zr.

After EDS data was analyzed, reactor conditions were adjusted to arrive at the desired

yttrium-to-zirconium ratio of 7 to 93%. During the run the Y source ran out or the bubbler

clogged and experiments were put on hold so repairs could be made.

2.5 Fourth Quarter Work

In the fourth quarter, the Y source was changed and lines cleaned, readying the reactor for

deposition runs. The reaction chamber was modified to improve thickness uniformity as a

function of distance along the rod. A quartz cone was added to funnel the gas flow onto the test

rod ( Figure 3). A few thin test runs of ZrO2 were run to determine what effect the cone had on

uniformity. The uniformity was improved but not substantially.
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Figure 3 Diagram of reactor showing placement of flow controlling cone

Following the uniformity study, runs to optimize the yttrium-to-zirconium ratio

commenced. However, reactor problems deterred progress on this front. Some of the problems

encountered were clogged Zr, and Y feed and vent lines, the retum of RF plasma in the

deposition zone, Zr, and Y source contamination. The numerous problems were traced to

plumbing leaks found at VCR fittings inside the high temperature oven. It is believed these leaks

were caused by the fittings being repeatedly thermally cycled each time the oven was cooled and

reheated for deposition. VCR fittings are known to loosen under these circumstances. The loose

fittings most likely allowed air and water vapor to enter the gas handling system, oxidizing the

sources and clogging lines and bubblers. The fittings were tightened and reactor leak checked.

A decision was also made to keep the source oven temperature fixed at the elevated temperature

to minimize thermal cycle fitting loosening.

Also during this quarter the subcontractor prepared test rods with the special alloy bond

coat for high temperature testing. These rods were received by Spire, but were held until the

reactor was running better.

2.6 Fifth Quarter Work

Plagued by the aftermath of fourth quarter problems, only small progress was realized in

this quarter. New sources, unexpectedly contaminated last quarter, were ordered. Long lead

times for the sources limited time to perform experiments. Once the new sources arrived, they

were installed and work began. A small piece of Silicon was mounted to the end of a bar with

silver epoxy. Deposition conditions (Table 2 below), believed to be the best to date were run.

The silicon sample from the run was measured using EDS and showed near correct

stoichiometry, with 10% yttrium-oxide in zirconium oxide (desired amount is 7%). See Figure 4.

Table 2 Deposition conditions for EDS sample pictured in Figure 4.

675°C 200 cc
/min

160°C

6



Figure 4 EDS spectrum of sample showing nearly correct stoichiometry, with 10% yttrium-
oxide in zirconium oxide (desired amount is 7%).

2.7 Sixth Quarter Work

Reactor problems again hindered any real progress in the sixth quarter. The Y source

continued to clog and deposits in the Zr vent line shut the reactor down on numerous occasions.

Much of the time in this quarter was spent repairing the reactor.

However, even with the problems, thick coatings of zirconia were deposited on a test

rod. Initially, the coating was thicker near the "front" of the test piece, closest to the gas inlet in

the MOCVD coating system. Turning the test piece end-to-end halfway through the coating

cycle resulted in a more uniform coating along the length. Coatings thickness was a maximum

of 30 microns. Uniformity was fair over most of the sample, but in some areas adhesion was

poor.

The sample was sent to Pratt & Whitney for analysis. Microphotographs of the coating

are shown in Figure 5a-d.

2.8 Seventh Quarter Work

Most of this quarter was spent in re-optimizing the coating process after repairing the

reactor problems from last quarter. The pressure was increased to reduce the plasma and its

deleterious effects. The temperature and flow of the gases were adjusted so that the rod was

preferentially coated. At the conclusion of this quarter we had a coating of about half the desired

thickness on the test sample. The yttrium content of sample shown in Figure 6 is l0 _1 atomic

percent.
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Figure 5 a) Low magnification micrograph of a more uniform part of the ceramic coating, b)
High magnification of a uniform part of the ceramic coating, c) Low magnification
photo of a less uniform part of the ceramic coating, d) High magnification photo of
a less uniform part of the ceramic coating; and e) high magnification image of 10
micron CVD zirconia film.
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Figure 6 High magnification photo of cross section of yttria zirconia coating.

2.9 Eighth Quarter Work

During this quarter, thick coatings of yttria-stabilized zirconia were deposited on a test

rod. The coating thickness was made more uniform through optimization of the RF coil to more

uniformly heat the test piece. Unfortunately, the adherence of this coating was not good. The

bar (sample 5) was sent to Pratt & Whitney for testing, but unfortunately some of the coating was

scored and scratched off during shipping. Figure 7 a and b shows the test bar coating as received

by Pratt & Whitney.

Figure 7 (a) Leading edge image of Spire sample #5 test bar in as received condition.
(b) Trailing edge image of Spire sample #5 test bar in as received condition.



Pratt & Whitney examined sample #5 by SEM. Analysis shows that the average yttrium

content (taken at four locations around the bar, 2.5 inches from the bottom) is 14 + 3%. The

amount of yttrium present appears to be consistent around the perimeter of the test bar. The

thickness of the coating taken from a sample 2.5 inches from the butt is 16.62 + 4.92 I_m or 0.65

+0.19 mils. This is substantially below the target of a five mil thick coating.

The microstructure of the test bar is shown in Figure 8a-h. The columnar structure of the

yttria stabilized zirconia coating seems to be disturbed in a three micron layer near the ceramic/

bond coat interface as seen in Figure 8h.

A short thermal anneal experiment was conducted to try and improve the adhesion of the

films. Preliminary results of the experiment indicated that sintering the films at high temperature

improved the adhesion. This issue is discussed in more detail in the next section.

Due to the many technical problems, Spire asked for a program extension. This extension

was granted in early 1999 and was extended through September 1999.

2.10 Ninth Quarter Work

During the ninth quarter, Spire performed YSZ deposition and high temperature anneals

in an attempt to improve the adhesion of the films. Two types of annealing experiments were

performed. In the first experiment, one hour open air oven anneals were performed at 950°C

after each 10 microns of YSZ deposition. In a second experiment, one test bar from experiment

one was annealed at 1200°C in a diffusion tube with a mixture of N2 and air. A summary of the

experiments are shown in Tables 3 and 4.

As can be seen from the Tables 3 and 4, high temperature annealing did not change the

appearance of the films and did not improve the adhesion properties. Also, it appears that the

thickness of the films, regardless of deposition time, are self-limiting around 50 microns,

indicating the film is not adhering after 50 microns of deposition. It appeared that the thickness

limit was related to the formation of powdery material on the reactor wall.

In January 1999, the Principal Investigator (Anton Greenwald) left the company. This

limited further technical work during the quarter. All technical work stopped after the above

experiments and a program reevaluation was initiated.

2.11 Tenth Quarter Work

During this quarter, Spire reevaluated program goals, technical progress to date,

remaining funds, and determined a course of action which would most likely lead to good YSZ

coatings.

Technical issues relating to film adhesion were discussed with Ms. Sue Meier at Pratt &

Whitney. One most probable cause of the poor adhesion was agreed to be depositing the film at

too low a temperature. Ms. Meier believed that a temperature of approximately 1000°C - 1100°C

is required to achieve adherent, hard films.

10



a. Low magnification SEM photo of LE. b. High magnification SEM photo of LE.

c. Zr dot map of area shown in b. d. Y dot map of area shown in b.

e. AI dot map of area shown in b. f. Ni dot map of area shown in b.

Figure 8 Microstructural analysis of Spire sample #5.

]]



g. High magnification photo of TE. h. High magnification backscattered electron image
of TE.

Figure 8 Microstructural analysis of Spire sample #5. (concluded)

Table 3 Summary of Annealing Experiment #1

10-15 Whitish, powder
like

950 No change

2 25-30 Whitish, powder 950 8 No change
like

3 35-40 Whitish, powder 950 9.5 No change
like, looks thicker
and a little rough

4 40-45 Whitish, powder 950 8 No change
like

5 50-55 Whitish, powder 950 8 No change
like

6 50-55 950 8Whitish, powder
like

No change. Film thickness
appears to be self limiting

around 50 microns. Also, film

scrapes off easily.

]2



Table 4 Summary of Annealing Experiment 2.

85

Using these facts, a revised statement of work was generated requesting a reallocation of

subcontract funds and a change to the statement of work. The revised statement of work is

summarized below. Also, a request was made to change the principal investigator from Anton

Greenwald to Victor E. Haven (See Spire memo dated 22 April 1999, attn: Mr. Jon Schultz).

2.12 Revised Statement of Work

First, to address the deposition temperature problem, an upgrade to the RF heating system

will be made to allow deposition temperatures to 1000°C-1100°C. The current system uses a

2.5 kW RF generator which only heats the bars to between 600-800°C. The 2.5kW generator

will be replaced with a 5 kW generator and will allow heating to well over 1000°C. Also, the RF

coil will be modified to improve coupling efficiency to the bar.

To address the problem of low deposition rate caused by reaction tube wall deposition,

the reactor tube will be redesigned to allow more of the reactant to flow over the bar and will

incorporate reaction tube wall cooling. The tube wall temperature will be controlled at a level

cool enough to limit the decomposition of the chemicals and at the same time hot enough to

reduce condensation of the reactants. It is estimated that the wall temperature will be maintained

between 100-300°C. The reaction tube will either be cooled using fluid (water, alcohol, oil) or

with forced air using high flow blowers around the reaction tube.

The following are the tasks and improvements required for the deposition of thick films

of yttria-stabilized zirconia (YSZ) suitable for turbine blade coatings:

2.12.1 Task I - Reactor Modifications

1A

1B

1C

1D

Design and procure new reaction tube (bell jar)

Specify and procure reconditioned 5 kW RF generator (trade in 2.5kW unit)

Design modified gas handling/injection system for improved reactant delivery

Order new metalorganic sources.

2.12.2

will be

Task 2 - Reactor Setup

After the reactor modifications have been designed and the parts are in-house, the reactor

setup. The following tasks will be performed.

2A Install new reaction tube (bell jar) and modified cooling system

2B Install RF generator and remake RF coil

2C Install redesigned gas injection plumbing to allow for more efficient injection of

the reactants

2D Clean plumbing, install gas dryers, leak test, heat tape gas lines.

13



2.12.3 Task 3 - Test Hardware

When reactor is assembled the following tests will be performed:

3A Test RF radiation for safety

3B Test heating capability, determine that 1000°C deposition temperature can be

achieved, modify as required.

2.12.4 Task 4

4A

4B

4C

4D

4E

- Plan and Perform Experiments

Plan experiments and deposit about 10 films with different flow conditions for

composition and growth rate tests. RBS, SIMS and other techniques as

applicable, will be used to determine composition and thickness.

Deposit 10 micron films on 4 test bars, test composition and adhesion

Deposit 50 _tm films on 2 test bars, test composition, adhesion and send to

Pratt & Whitney for testing.

If Task 4C yields good material, deposit 100-125 micron films on 2 bars and send

to Pratt & Whitney for testing.

If time allows, repeat task 4D with minor deposition conditions and send to

Pratt & Whitney for testing

2.12.5 Task 5 - Reports and Deliverables

Monthly or quarterly (as requested by NASA) and final report will be prepared.

2.13 Eleventh Quarter Work

During this quarter, Spire negotiated a revised statement of work with P&W and sent a

signed modified contract to NASA on July 21, 1999. The new completion date is December 31,

1999.

Work on the reactor commenced immediately after contract approval. All designs were

completed, parts ordered and ninety percent of the reactor modifications were completed. The

following is a summary of tasks completed in the eleventh quarter.

2.13.1 Tasks Completed

A larger, 5kw RF generator was ordered, tested and installed on the reactor. Heating tests

were performed at the RF vendor's facility before accepting the unit, with a stipulation that the

unit will heat a test bar to over 1000°C. The unit had little trouble heating a bar to over 1100°C

(measured with an optical pyrometer), in approximately 5 minutes. Figure 9 is the bar on test at

the RF vendor's facility.

A new gas injection manifold was designed, fabricated and installed on the reactor. The

improved manifold has three inlets. One for the Zr precursor, one for the Y precursor and a third

for the main push line and 02 source. All lines are injected separately into the reaction chamber

to minimize gas phase reactions and oxide formation which can clog lines, a persistent problem

during this program.

14
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Figure 9 Bar during heating test at RF vendor's facility

The reactor plumbing was modified to reduce dead space and to allow for better purging

between runs, and to reduce pre-reaction deposits. Two pressure monitors (Baratrons) were

added to the MO bubblers so the pressure could be monitored during the runs. Air blowers were

added to keep the quartz reactor walls cool to minimized deposits. In addition, all MO and main

lines were rerouted to go through a N2 purifier. This was done to keep carrier gas clean to

minimize MO source contamination, another problem encountered in the past. Figure l0 shows

the modified reactor plumbing.
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Figure 10 Modified reactor plumbing
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2.14 Twelfth Quarter Work

In this quarter, remaining hardware changes were completed, as outlined below, and

deposition experiments began.

Completed hardware changes:

Leak checked plumbing

Made new RF coil for better coupling to the test bar

Installed new Y and Zr sources

Wired pressure sensors (Baratrons) and displays

Installed reaction tube cooling blowers

Installed rebuilt vacuum pump

2.14.1 Deposition Experiments

For the initial experiments, stainless steel test bars (made in the Spire shop) were used.

The first experiments run were to determine heating capability of the system and to calibrate

roughly the optical pyrometer reading versus RF power settings. RF power settings for high and

low temperature ranges were calibrated, 1050-1080°C and 930-960°C, respectively.

After the temperature was calibrated, initial deposition conditions were chosen to

determine the zirconia deposition rate. (See Table 5.)

Table 5 Initial zirconia deposition conditions to determine deposition rate.

A stainless steel test bar was loaded and reactor pumped down to 48 torr. When all flows

and pressures were stabilized, the Zr bubbler valves were opened. Immediately, Zr source liquid

started to enter the reactor tube, covering the bottom portion of the tube; the run was aborted.

The Zr source was removed and weighed; 30 grams of Zr still remained, so the source was

reinstalled and leak-checked. The reaction tube was removed, cleaned, and reinstalled.

Again, with caution, the test run was initiated. This time everything performed well and

deposition took place as expected. Within minutes of starting the deposition, the reactor walls

were covered with a white deposit. The bar was examined after one hour of deposition and had a

bronze color with a rainbow pattern (Figure 11). SEM and EDS done on the film indicate the

film is less than 5 microns thick, determined by the relatively strong peaks from the stainless

steel rod (Fe, Cr), as compared to the Zr peak. Figure 12 is an EDS scan of the film, and
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Figure 11 Photograph of zirconia film deposited using conditions from Table 5.
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Figure 12 EDS of thin zirconia film deposited using conditions from Table 5.

]7



The run in Table 5 above was repeated a second time with identical results. A third run

was made using the conditions from Table 5 except the deposition temperature was maintained at

960°C. The film from this run was even thinner then the other two runs.

One additional run was attempted using similar flow conditions. However, the Zr bubbler

clogged during heating and the run was aborted.

The outcome of these experiments was very disappointing. All modifications to the

reactor to improve the deposition rate and film properties did not improve the results. The

deposition rate is still very slow and not sufficient for efficiently depositing thick films. Also,

the plumbing modifications did not help the clogging problems encountered numerous times

during this program.

Experiment with Highly Crystalline Nucleation Layer - A preliminary experiment was

conducted to evaluate the possibility of using a new deposition process, developed for other

applications at Spire, to form a nucleation layer for thermal barrier coatings. Oxide coatings

formed by Spire's proprietary process are generally thin, highly crystalline, and have been

demonstrated to be strongly adherent to several different materials, including Co-Cr-Mo

superalloys, stainless steels, titanium, and Ti-6A-4V alloy.

Figure 13a shows an example of the YSZ coating deposited by the proprietary process on

a polished Co-Cr-Mo (ASTM F-799) coupon. The coating was applied on half of the coupon so

that a thickness measurement could be made with a Dektak IIA surface profilometer. Figure 13b

is a 1 mm profilometry trace across the coated and uncoated boundary, indicating that the

polycrystalline coating has an average thickness of about 1.2 microns. (It should be noted that the

apparently negative values of the trace in Figure 13b are due to overshoot of the profilometer's

diamond stylus.) Based on tape adhesion and scratch tests, the YSZ coating by the proprietary

process is very adherent and was judged to show promise as the interface between the oxidation

barrier and thermal barrier coatings for turbine blades.

Theorizing that the slow MOCVD deposition rate could be caused by poor nucleation on

the surface of the test bars, the Spire process was used to deposit a highly crystalline layer of Zr

oxide, yttria-stabilized with approximately 10% Y203, on one Pratt & Whitney bar (SP55).

Figure 14 is an SEM micrograph of the bar after one deposition cycle of the Spire process,

showing that the surface was fully covered with no evidence of flaking.

The proprietary process was repeated 8 times with a 1000°C anneal of 50% mixture of 02

and N 2 between each deposition. The resulting film thickness after the eight cycles is

approximately 5 microns. Figure 15 is an SEM micrograph of the 8 cycle film, showing a

morphology similar to that of the initial layer. Figure 16 is an EDS analysis of the film

following the depositions. The EDS spectrum indicates a thin film of Zr oxide with about 10%

Y203. The thickness of the film was deduced from the strong Ni, Co, Cr, and A1 peaks generated

by the underlying Pratt & Whitney anti-corrosion layer of NiCoCrAIY, as compared to the

relatively weak Zr and Y peaks from the Spire-deposited top film.
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Figure 13 (a) Co-Cr-Mo alloy coupon with yttria-stabilized zirconia coating deposited on half

of its polished surface. (b) Surface profilometery trace across coating boundary

indicating average thickness of about 1.2 microns.
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Figure 14

990643WS

SEM Micrograph of Zr oxide, Y stabilized film deposited with Spire proprietary

process.

Figure 15

990644WS

SEM micrograph of 8 cycle Y stabilized Zr film deposited using the Spire

proprietary process.
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Figure 16 EDS Spectrum of 8 cycle Y stabilized Zr film deposited using the Spire proprietary
process.

MOCVD Deposition Attempt on Crystalline Nucleation Layer - A final MOCVD deposition

was attempted using the bar with the 8 cycle, Spire proprietary coating as the nucleation layer.

The Zr source, which had clogged from the previous run, was replaced with a new source, and

the test bar loaded into the reactor. Flow conditions for depositing yttrtia-stabilized Zr oxide

were determined and the reactor was heated to 1070°C. Oxygen was turned on and the Zr

bubbler was opened. Again, some liquid instantly appeared in the reaction chamber. This time

only a small amount was visible so the run was continued. The Y source was opened and flow

set. However, pressure began to build up in the Y line after five minutes. The Y bubbler by-pass

was opened and the pressure stabilized, indicating a blockage in the Y bubbler. The run was

continued using just Zr oxide. However, after about five minutes the Zr source liquid in the tube

(flammable solvent) ignited violently; blowing the reactor end cap off the tube. At this point the

reactor was shut down and a decision was made for both technical and safety reasons to

terminate all MOCVD work.

Following the mishap, the reactor was disassembled and decontaminated. All sources
were returned to vendor.
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3. RESEARCH FINDINGS OR RESULTS

Although YSZ coatings with nearly correct stoichiometry were deposited on various

substrates, it is quite evident from the work performed during this program that MOCVD, using

the Zr T-Butoxide and Y THD sources, is not an option for depositing thermal barrier coatings

on turbine blades. The low vapor pressure of the sources makes the transport properties

unfavorable for depositing thick films in a timely or cost-effective process. Also, operating the

sources at a low pressure and high temperature, required for transport, causes many other

problems, such as line clogging and source contamination/degradation.

There are other metalorganic sources now available which might lead to better results.

Some potential sources that have been reported with favorable results (Journal of Material

Research, Ref. Vol. 14, No 1 Jan 1999) are Zr(acac)4 and Zr(dpm)4 (acac=acetylacetonate;

dpm=dipivaloylmethanate) as well as a new, highly volatile, air-and moisture-stable Zr

precursor, Zr(tfacen)2 (tfacen=bis-trifluoracetylacetone-ethylenediminate).

The preliminary experiments with coatings deposited by Spire's proprietary process

indicated that thin layers (1 to 2 microns) of YSZ could be formed on hard metal substrates and

that the coatings were highly crystalline and adherent. Based on these observations, a multiple-

layer coating, with intervening annealing cycles, was attempted, although with only a small

additional build-up of coating material. Use of the crystalline YSZ as a nucleation layer for

further build-up by MOCVD was not sufficiently tested to determine its true potential, although

the good adhesion and uniform surface coverage shown by the 1 to 2 micron YSZ layer provides

a basis for optimism. Development of better MOCVD techniques would allow a good test of this

approach.
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4. POTENTIAL APPLICATIONS FOR THE PROJECT RESULTS IN A PHASE III FOR
NASA PURPOSES AND FOR COMMERCIAL PURPOSES

The importance of gas turbines for aeropropulsion, marine, and stationary power plants

was the major technological motivation of this SBIR project to develop better thermal barrier

coatings for turbine blades by metalorganic chemical vapor deposition. Based on experience with

deposition of electronic materials such as gallium arsenide, oxide coatings formed by MOCVD

should have highly consistent stoichiometry, excellent crystal quality, and adhesion properties

that are potentially better than those formed by plasma spray, conventional CVD, or vacuum

evaporation. These coatings, when applied to turbine blades, should improve turbine

performance by allowing higher temperature, longer lifetime operation.

Although the project was unsuccessful in developing a superior thermal barrier coating,

considerable information was gained on the formation of zirconia and yttria coatings by

MOCVD. The problems encountered with the reactor, mainly control of reagent partial pressures,

flow patterns in the deposition zone, and substrate heating, lead to YSZ coatings in which

composition, thickness, and thickness uniformity were difficult to establish. The strides made in

overcoming these problems are all valuable for any future efforts to deposit thick, adherent,

uniform, thermal barrier coatings. Finally, the concept of using a thin, highly crystalline YSZ

interface layer between the oxidation protection layer and the thick thermal barrier coating has

enough potential to be subject of further investigation.

23



DISTRIBUTION LIST

NASA/Glenn Research Center (original + 1 3.5-inch diskette)
Attn: Procurement Contract Administrator

(Mail Code 0613)
21000 Brookpark Road
Cleveland, OH 44135

Goddard Space Flight Center (Single Page Project Summary only)
SBIR Program Manager, Code 705
Greenbelt, MD 20771

NASA/Glenn Research Center (1)
Intellectual Property Counsel/MS. Le-Law
21000 Brookpark Road
Cleveland, OH 44135

NASA/Glenn Research Center (one clipped + 1 3.5-inch diskette)
Attn: Mr. Joseph Doychak (Mail Code 5160)
21000 Brookpark Road
Cleveland, OH 44135

NASA Center for Aerospace Information (one clipped + 1 3.5-inch diskette)
Attn: Acquisition Dept.
7121 Standard Drive
Hanover, MD 21076-1320

NASA/Glenn Research Center (1)
Technology Utilization Office/MS. 7-3
21000 Brookpark Road
Cleveland, OH 44135

24



REPORT DOCUMENTATION PAGE _ormApD,ovec
OMB No 0704-018_ ¢

PubhC rl_Otl)fl_ DgtOen lot this COllie|iOn Of )n|ormlllOn IS ISt_qlll@0 10 I¥1)tl_ff 1 f'lOut _r rlIDonse IMCIu(_IrI_ |nO lime lot fet_lwtrl_ in|lrU_*ong IIIt_)_ Ola$l_r_ 0llo $o..rc_

_a_r_rln_ IF|0 mllnl_lnlN_ |rio 01|8 hl4_o(io, i)_c_ ¢omolgtffl_ In@ rl)VlQWlrt_ |Pie ¢O1|(1¢11on Of Ift_otf1_ll IOql _(l_ ¢ome_lrtTs r_ItOm 0 this I)utGl_n es1_ehile or |r_ Ot_t_r ISDff_ (" _"

collection of Ih|Ofrf_||lOfl IncIuOlrl_ SU_g|llOnS |or t_gCIf_ Ih15 _)gt*¢e tl IO Wlsh_l_1On fdeldquirllr$ Servt¢l$, OBrec1orlle for Inlormll)on Ooe_|11Of_S it_cf Re_o._._ _5 de"err=:*

DIv)$ Highway 5uric 1204 Arl)rtglOn VA 22202-4302 =no |o the O_,ce of Msnagemenl In@ Buoget FIperwOrk Reducl,on Pvofe¢l (0704 01_8) V_lsnlnglon DC 205_'.'-

1 AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED
12/22/99 Final Report

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

Chemical Vapor Deposition of Turbine Thermal Barrier Coatings NAS3-97033

6 AUTHOR(S)

Victor E. Haven

7 PERFORMINGORGANIZATIONNAMEIS)AND ADDRESS(ES)

Spire Corporation
One Patriots Park

Bedford, MA 01730-2396

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA/Glenn Research Center

Attn: Mr. Joseph Doychak (Mail Code 5160)

21000 Brookpark Road
Cleveland. OH 44135

11. SUPPLEMENTARY NOTES

B. PERFORMING ORGANIZATIOt_
REPORT NUMBER

60383

10 SPONSORING/MONITORING

AGENCY REPORT NUMBER

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13 ABSTRACT (Maxtrnum 200 words)

Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine

components, therefore increasing thermal efficiency. Performance and lifetime of existing ceramic coatings are

limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its

microstructure,which is determined by the deposition method.

This research is investigating metaiorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to

improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are

deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition,

structure, and response to the :_:rbine environment will be characterized.

14. SUBJECTTERMS

thermal barrier coatings, yttria stabilized zirconia,

metalorganic chemical vapor deposition, MOCVD, YSZ

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified
i

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF

ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89
Ptuerlbed by ANSI Sl| 239-18



sp,re Spire Corporation/One Patriots Park/Bedford, MA 01730-2396/USA


